The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by modeling noise and degradations that appear in real-world settings. We propose DeFlow, a method for learning stochastic image degradations from unpaired data. Our approach is based on a novel unpaired learning formulation for conditional normalizing flows. We model the degradation process in the latent space of a shared flow encoder-decoder network. This allows us to learn the conditional distribution of a noisy image given the clean input by solely minimizing the negative log-likelihood of the marginal distributions. We validate our DeFlow formulation on the task of joint image restoration and super-resolution. The models trained with the synthetic data generated by DeFlow outperform previous learnable approaches on three recent datasets. Code and trained models are available at: https://github.com/volflow/DeFlow
翻译:获取配对数据仍然是学习真实世界应用图像恢复和增强模型的一个主要瓶颈。当前战略的目的是通过模拟现实世界环境中出现的噪音和退化,综合现实的培训数据。我们提议DeFlow,这是从未受重视的数据中学习随机图像退化的方法。我们的方法基于一种为有条件的正常流动而开发的新的、没有受重视的学习配方。我们模拟了在共享流动编码-解码网络潜在空间中的退化过程。这使我们能够通过仅仅尽量减少边缘分布的负日志相似性来学习噪音图像的有条件分布。我们验证了我们的DeFlow配方,这是联合图像恢复和超分辨率的任务。我们所培训的模型是DeFlow在三个最近的数据集上以合成数据取代了先前的可学习方法。代码和经过培训的模型见于:https://github.com/volplow/DeFlow。