Beyond achieving higher compression efficiency over classical image compression codecs, deep image compression is expected to be improved with additional side information, e.g., another image from a different perspective of the same scene. To better utilize the side information under the distributed compression scenario, the existing method (Ayzik and Avidan 2020) only implements patch matching at the image domain to solve the parallax problem caused by the difference in viewing points. However, the patch matching at the image domain is not robust to the variance of scale, shape, and illumination caused by the different viewing angles, and can not make full use of the rich texture information of the side information image. To resolve this issue, we propose Multi-Scale Feature Domain Patch Matching (MSFDPM) to fully utilizes side information at the decoder of the distributed image compression model. Specifically, MSFDPM consists of a side information feature extractor, a multi-scale feature domain patch matching module, and a multi-scale feature fusion network. Furthermore, we reuse inter-patch correlation from the shallow layer to accelerate the patch matching of the deep layer. Finally, we nd that our patch matching in a multi-scale feature domain further improves compression rate by about 20% compared with the patch matching method at image domain (Ayzik and Avidan 2020).
翻译:除了在古典图像压缩编码器上实现更高的压缩效率之外,深度图像压缩还有望通过额外的侧边信息(例如,另一张来自同一场景不同角度的图像)得到改进。为了更好地利用分布式压缩假设情景下的侧信息,现有方法(Ayzik和Avidan 2020)仅安装图像域的补丁匹配,以解决不同观察点造成的parllax问题。然而,图像域的补丁匹配并不与不同查看角度造成的规模、形状和照明差异相适应,无法充分利用侧信息图像的丰富纹理信息。为解决这一问题,我们提议多系统功能补丁补丁匹配(MSFDPM),以充分利用分布式压缩图像模型解码器上的侧端信息。具体地说,MSDFDPM由侧信息提取器、多尺度特征域间补丁间配比模块和多级特征融合网络组成。此外,我们再利用浅层层之间的相配配对关系,以加快深层图像的补补接。最后,我们建议多系统比了20个域域域域的补丁比率。