Nonlinear iris texture deformations due to pupil size variations are one of the main factors responsible for within-class variance of genuine comparison scores in iris recognition. In dominant approaches to iris recognition, the size of a ring-shaped iris region is linearly scaled to a canonical rectangle, used further in encoding and matching. However, the biological complexity of the iris sphincter and dilator muscles causes the movements of iris features to be nonlinear in a function of pupil size, and not solely organized along radial paths. Alternatively to the existing theoretical models based on the biomechanics of iris musculature, in this paper we propose a novel deep autoencoder-based model that can effectively learn complex movements of iris texture features directly from the data. The proposed model takes two inputs, (a) an ISO-compliant near-infrared iris image with initial pupil size, and (b) the binary mask defining the target shape of the iris. The model makes all the necessary nonlinear deformations to the iris texture to match the shape of the iris in an image (a) with the shape provided by the target mask (b). The identity-preservation component of the loss function helps the model in finding deformations that preserve identity and not only the visual realism of the generated samples. We also demonstrate two immediate applications of this model: better compensation for iris texture deformations in iris recognition algorithms, compared to linear models, and the creation of a generative algorithm that can aid human forensic examiners, who may need to compare iris images with a large difference in pupil dilation. We offer the source codes and model weights available along with this paper.


翻译:由学生体积变异造成的非线性 iris 纹理质变形是导致类内真正比较分数差异的主要因素之一。 在对 iris 识别的主要方法中, 环状的 iris 区域大小以线性缩缩缩成直线矩形, 用于编码和匹配。 然而, iris sphincter 和 dilator 肌肉的生理复杂性导致 iris 特征在学生体积函数中非线性移动, 而不是仅仅按照 radal 路径来组织 。 除了基于 iris 变色体生物机的现有的理论模型外, 本文中我们提议了一个新的基于 iris 直线性电解码的模型, 可以直接从数据中直接学习 iris 纹理特征的复杂运动。 拟议的模型需要两种输入, (a) 符合 近线性 iris 图像与初始学生体积相匹配的, (b) 以及 (b) 用来定义 iris 目标形状的 binary 掩码 。 。 模型可以让所有必要的非线性纸质变形的模型与iris 和直线性变变形 图像比 的图像的图像的图, 。

0
下载
关闭预览

相关内容

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员