Nonlinear iris texture deformations due to pupil size variations are one of the main factors responsible for within-class variance of genuine comparison scores in iris recognition. In dominant approaches to iris recognition, the size of a ring-shaped iris region is linearly scaled to a canonical rectangle, used further in encoding and matching. However, the biological complexity of the iris sphincter and dilator muscles causes the movements of iris features to be nonlinear in a function of pupil size, and not solely organized along radial paths. Alternatively to the existing theoretical models based on the biomechanics of iris musculature, in this paper we propose a novel deep autoencoder-based model that can effectively learn complex movements of iris texture features directly from the data. The proposed model takes two inputs, (a) an ISO-compliant near-infrared iris image with initial pupil size, and (b) the binary mask defining the target shape of the iris. The model makes all the necessary nonlinear deformations to the iris texture to match the shape of the iris in an image (a) with the shape provided by the target mask (b). The identity-preservation component of the loss function helps the model in finding deformations that preserve identity and not only the visual realism of the generated samples. We also demonstrate two immediate applications of this model: better compensation for iris texture deformations in iris recognition algorithms, compared to linear models, and the creation of a generative algorithm that can aid human forensic examiners, who may need to compare iris images with a large difference in pupil dilation. We offer the source codes and model weights available along with this paper.
翻译:由学生体积变异造成的非线性 iris 纹理质变形是导致类内真正比较分数差异的主要因素之一。 在对 iris 识别的主要方法中, 环状的 iris 区域大小以线性缩缩缩成直线矩形, 用于编码和匹配。 然而, iris sphincter 和 dilator 肌肉的生理复杂性导致 iris 特征在学生体积函数中非线性移动, 而不是仅仅按照 radal 路径来组织 。 除了基于 iris 变色体生物机的现有的理论模型外, 本文中我们提议了一个新的基于 iris 直线性电解码的模型, 可以直接从数据中直接学习 iris 纹理特征的复杂运动。 拟议的模型需要两种输入, (a) 符合 近线性 iris 图像与初始学生体积相匹配的, (b) 以及 (b) 用来定义 iris 目标形状的 binary 掩码 。 。 模型可以让所有必要的非线性纸质变形的模型与iris 和直线性变变形 图像比 的图像的图像的图, 。