We consider the general setting for partial matching of two or multiple graphs, in the sense that not necessarily all the nodes in one graph can find their correspondences in another graph and vice versa. We take a universe matching perspective to this ubiquitous problem, whereby each node is either matched into an anchor in a virtual universe graph or regarded as an outlier. Such a universe matching scheme enjoys a few important merits, which have not been adopted in existing learning-based graph matching (GM) literature. First, the subtle logic for inlier matching and outlier detection can be clearly modeled, which is otherwise less convenient to handle in the pairwise matching scheme. Second, it enables end-to-end learning especially for universe level affinity metric learning for inliers matching, and loss design for gathering outliers together. Third, the resulting matching model can easily handle new arriving graphs under online matching, or even the graphs coming from different categories of the training set. To our best knowledge, this is the first deep learning network that can cope with two-graph matching, multiple-graph matching, online matching, and mixture graph matching simultaneously. Extensive experimental results show the state-of-the-art performance of our method in these settings.
翻译:我们考虑部分匹配两个或多个图形的一般设置, 也就是说, 不一定一个图形中的所有节点都能在另一个图形中找到它们的对应之处, 反之亦然。 我们从宇宙中找到一个与这个无处不在的问题相匹配的视角, 即每个节点要么在虚拟宇宙图形中匹配到一个锚点, 要么被视为外端。 这种宇宙匹配方案有一些重要的优点, 而现有的基于学习的图形匹配( GM) 文献中并未采用这些优点。 首先, 不相匹配和异端检测的微妙逻辑可以明显地模型化, 否则在对齐匹配方案中处理起来就不那么方便了。 其次, 它使得最终到终端的学习, 特别是宇宙水平的对齐度准度准度的准度的准度学习, 以及聚集外端的损耗设计。 第三, 由此产生的匹配模型很容易处理在线匹配下的新抵达图, 甚至是来自不同类别培训的图表。 据我们所知, 这是第一个能够同时匹配两面匹配、 多幅匹配、 匹配、 在线匹配和混合图表的深度学习网络网络网络。 广泛的实验结果显示我们的状态方法。