We develop computational methods that incorporate shear into fluctuating hydrodynamics methods. We are motivated by the rheological responses of complex fluids and soft materials. Our approach is based on continuum stochastic hydrodynamic equations that are subject to shear boundary conditions on the unit periodic cell in a manner similar to the Lees-Edwards conditions of molecular dynamics. Our methods take into account consistently the microstructure elastic mechanics, fluid-structure hydrodynamic coupling, and thermal fluctuations. For practical simulations, we develop numerical methods for efficient stochastic field generation that handle the sheared generalized periodic boundary conditions. We show that our numerical methods are consistent with fluctuation dissipation balance and near-equilibrium statistical mechanics. As a demonstration in practice, we present several prototype rheological response studies. These include (i) shear thinning of a polymeric fluid, (ii) complex moduli for the oscillatory responses of a polymerized lipid vesicle, and (iii) aging under shear of a gel-like material.
翻译:我们开发了将剪切纳入波动流体动力学方法的计算方法; 我们的动力来自复杂的液体和软材料的风湿反应; 我们的方法以连续的随机流体动力学方程式为基础,这些方程式在单元周期细胞上受到剪切边界条件的限制,其方式与分子动态的利斯-爱德华条件类似; 我们的方法始终考虑到微结构弹性力学、流体结构流体动力结合和热波动; 关于实际模拟,我们为处理剪切的周期性边界条件的有效蒸馏场生成开发了数字方法; 我们表明,我们的数字方法符合波动消散平衡和近平衡统计力; 作为实践的示范,我们提出了几项原型的病理反应研究,其中包括:(一) 聚合液的剪减,(二) 聚合性脂液的骨浆反应的复杂模式,以及(三) 凝胶状材料在壳状下老化。