Gaussian processes provide a flexible, non-parametric framework for the approximation of functions in high-dimensional spaces. The covariance kernel is the main engine of Gaussian processes, incorporating correlations that underpin the predictive distribution. For applications with spatiotemporal datasets, suitable kernels should model joint spatial and temporal dependence. Separable space-time covariance kernels offer simplicity and computational efficiency. However, non-separable kernels include space-time interactions that better capture observed correlations. Most non-separable kernels that admit explicit expressions are based on mathematical considerations (admissibility conditions) rather than first-principles derivations. We present a hybrid spectral approach for generating covariance kernels which is based on physical arguments. We use this approach to derive a new class of physically motivated, non-separable covariance kernels which have their roots in the stochastic, linear, damped, harmonic oscillator (LDHO). The new kernels incorporate functions with both monotonic and oscillatory decay of space-time correlations. The LDHO covariance kernels involve space-time interactions which are introduced by dispersion relations that modulate the oscillator coefficients. We derive explicit relations for the spatiotemporal covariance kernels in the three oscillator regimes (underdamping, critical damping, overdamping) and investigate their properties.
翻译:高斯进程为高维空间功能近似提供了一个灵活、非参数框架。 共差内核是高斯进程的主要引擎, 包括支持预测分布的关联性。 对于使用时空数据集的应用, 合适的内核应该建模空间和时间依赖性。 分隔时共差内核可以提供简单和计算效率。 但是, 不可分离的内核包括空间- 时间互动, 以更好地捕捉观察到的关联性。 多数接受明确表达的不可分离内核是基于数学考虑( 可允许性条件)而不是第一原则衍生的。 我们展示一种混合光谱方法, 以物理参数为根据来生成相异内核内核。 我们使用这个方法来产生一种新的有物理动机的、 不可分离的内核内核内核内核, 其根源在于透视、 线性、 界、 调、 调和 调和调合的内核内核内核内核内核关系。 新的内核内核内核内核( 调的内核- 调调调调调调调调调调调调调调调调调调调调调调调调调调) 。