The standard density definition produces scattered values. Hence approaches improving features of the density estimates has been invented for many use cases. Presented general framework evaluating density using various kernels brings desired properties of density estimates and incorporates the most of ordinarily used methods. Extensive parametric study is performed on experimental data to illustrate effects of kernel selection (e.g. Gauss, cone) and its parametrization (blur). Quantitative evaluation of introduced quality criteria illustrates that kernel densities satisfy user requirements, e.g. conic kernel with radius in $[0.7, 1.2]$ m. These parametric values are also interpretable from proxemic theory indicating correctness of the whole concept. Besides, the kernel approach is directly compared to Voronoi approximation and customized distance to the nearest pedestrian - the comparison indicates a relevant correspondence. Furthermore, the kernel approach is supposed to be valid from mathematical perspective, since introduced Borsalino kernel has promising mathematical properties enabling future analytical research.
翻译:标准密度定义产生分散值。因此,许多使用案例都发明了改进密度估计特征的方法。使用各种内核评估密度的一般框架,提出了密度估计的预期特性,并纳入了大多数通常使用的方法。对实验数据进行了广泛的参数研究,以说明内核选择(例如高斯、锥形)及其平衡化(蓝色)的影响。对引进的质量标准的定量评估表明,内核密度满足了用户的要求,例如,内核内核与半径($[0.7、1.2] m)之间的锥体内核。这些参数值也可以从成文理论中解释,表明整个概念的正确性。此外,内核方法直接与Voronoooois近距离和与近行人定制的距离(比较表明一种相关的对应关系)。此外,从数学角度看,内核方法应该有效,因为引进的波萨利诺内核具有有良好的数学特性,可以进行未来的分析研究。