Previous works on the Recurrent Neural Network-Transducer (RNN-T) models have shown that, under some conditions, it is possible to simplify its prediction network with little or no loss in recognition accuracy (arXiv:2003.07705 [eess.AS], [2], arXiv:2012.06749 [cs.CL]). This is done by limiting the context size of previous labels and/or using a simpler architecture for its layers instead of LSTMs. The benefits of such changes include reduction in model size, faster inference and power savings, which are all useful for on-device applications. In this work, we study ways to make the RNN-T decoder (prediction network + joint network) smaller and faster without degradation in recognition performance. Our prediction network performs a simple weighted averaging of the input embeddings, and shares its embedding matrix weights with the joint network's output layer (a.k.a. weight tying, commonly used in language modeling arXiv:1611.01462 [cs.LG]). This simple design, when used in conjunction with additional Edit-based Minimum Bayes Risk (EMBR) training, reduces the RNN-T Decoder from 23M parameters to just 2M, without affecting word-error rate (WER).


翻译:常规神经网络-传输(RNN-T)模型的以往工作表明,在某些条件下,有可能简化其预测网络,在识别准确性方面少少少少少少少少少少亏少(arXiv:2003.07705 [ees.AS],[2],arXiv:2012.06749 [cs.CL])),其方法是限制先前标签的上下文大小,和(或)使用较简单的结构结构,而不是LSTMS, 这样做的好处包括缩小模型大小、加快推导速度和节能,所有这些都对在线应用有用。在这项工作中,我们研究如何使RNNN-T的解码(定位网络+联合网络)更小、更快,而不会在识别性性性能方面出现退化。我们的预测网络对输入嵌入进行简单的加权,并将其嵌入式矩阵重量与联合网络的输出层(a.k.a.a.重量搭配,通常用于对arXiv:161.01462 [c.LG] 进行模拟的语言模拟。我们研究如何使RNNNN-M-DER 降低标准标准的最低限度设计,这种简单的最低限度,在使用时影响到VIDRM-BER-deal-deal-dexxxxx-dex-dexxxxxx

0
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
21+阅读 · 2021年2月13日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员