Domain generalization (DG) aims to learn a model on one or more different but related source domains that could be generalized into an unseen target domain. Existing DG methods try to prompt the diversity of source domains for the model's generalization ability, while they may have to introduce auxiliary networks or striking computational costs. On the contrary, this work applies the implicit semantic augmentation in feature space to capture the diversity of source domains. Concretely, an additional loss function of distance metric learning (DML) is included to optimize the local geometry of data distribution. Besides, the logits from cross entropy loss with infinite augmentations is adopted as input features for the DML loss in lieu of the deep features. We also provide a theoretical analysis to show that the logits can approximate the distances defined on original features well. Further, we provide an in-depth analysis of the mechanism and rational behind our approach, which gives us a better understanding of why leverage logits in lieu of features can help domain generalization. The proposed DML loss with the implicit augmentation is incorporated into a recent DG method, that is, Fourier Augmented Co-Teacher framework (FACT). Meanwhile, our method also can be easily plugged into various DG methods. Extensive experiments on three benchmarks (Digits-DG, PACS and Office-Home) have demonstrated that the proposed method is able to achieve the state-of-the-art performance.


翻译:空域一般化( DG) 旨在学习一个或更多不同但相关源域的模型,这些模型可以推广到一个看不见的目标域; 现有的 DG 方法试图为模型的概括能力促进源域的多样性,同时可能需要引入辅助网络或计算成本; 相反, 这项工作在特性空间应用隐含的语义扩增来捕捉源域的多样性; 具体地说, 将远程计量学习的额外损失功能( DML) 纳入到数据分布的本地几何测量中, 以优化数据分布的本地几何。 此外, 将具有无限扩增功能的交叉通缩损失的日志作为DML损失的输入功能, 以取代深度特性。 我们还提供理论分析, 以表明日志能够接近原始特性所定义的距离。 此外, 我们对功能空间内隐含的日志功能增缩的日志功能增加功能增加功能增加。 拟议的DGDG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DFACT- DF- DF- DG- DF- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DG- DF- DG- DG- DG- DG- DG- DG- DG- DG- DG- D- D- 3 3 方法, 和D- DG- DG- DG- DG-D-D-D-D-D-D- DG- DG-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-DG-DG-DG-D-D- 3-DAS-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员