The paper concerns several theoretical aspects of oriented supersingular $\ell$-isogeny volcanoes and their relationship to closed walks in the supersingular $\ell$-isogeny graph. Our main result is a bijection between the rims of the union of all oriented supersingular $\ell$-isogeny volcanoes over $\overline{\mathbb{F}}_p$ (up to conjugation of the orientations), and isogeny cycles (non-backtracking closed walks which are not powers of smaller walks) of the supersingular $\ell$-isogeny graph over $\overline{\mathbb{F}}_p$. The exact proof and statement of this bijection are made more intricate by special behaviours arising from extra automorphisms and the ramification of $p$ in certain quadratic orders. We use the bijection to count isogeny cycles of given length in the supersingular $\ell$-isogeny graph exactly as a sum of class numbers of these orders, and also give an explicit upper bound by estimating the class numbers.
翻译:论文涉及外向超单向美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元与超单向超单向超单向超单向火山及其与超单向单向徒步关系的若干理论方面。我们的主要结果是,所有外向超单向超单向超单向超单向超单向火山结合的边缘与美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=等超单向超超超单向单的循环(非双向非后跟踪闭闭徒行)的循环,以及超超单单单单单向单向单向单向单向单向单为这些单单单单单等数数数数数之和等数之和等数之数数数数数数的精确证明和比特异数的两异异异异异为异为异为不同行为的特殊行为。