For an ill-posed inverse problem, particularly with incomplete and limited measurement data, regularization is an essential tool for stabilizing the inverse problem. Among various forms of regularization, the lp penalty term provides a suite of regularization of various characteristics depending on the value of p. When there are no explicit features to determine p, a spatially varying inhomogeneous p can be incorporated to apply different regularization characteristics that change over the domain. This study proposes a strategy to design the exponent p when the first and second derivatives of the true signal are not available, such as in the case of indirect and limited measurement data. The proposed method extracts statistical and patch-wise information using multiple reconstructions from a single measurement, which assists in classifying each patch to predefined features with corresponding p values. We validate the robustness and effectiveness of the proposed approach through a suite of numerical tests in 1D and 2D, including a sea ice image recovery from partial Fourier measurement data. Numerical tests show that the exponent distribution is insensitive to the choice of multiple reconstructions.
翻译:对于一个错误的反向问题,特别是测量数据不完整和有限的问题,正规化是稳定反向问题的基本工具。在各种形式的正规化中,Ip处罚术语根据p的价值提供一系列各种特征的正规化。当没有明确的特征可以确定p时,可以纳入一个空间上差异不一的p,以应用在域上发生变化的不同规范化特征。本研究提出了一个战略,在没有真实信号的第一和第二个衍生物时,例如在间接和有限的测量数据的情况下,设计出列表式p。拟议方法从单一的计量中利用多重重建提取统计和补丁信息,协助对每个补丁进行分类,使其具有相应的p值。我们通过在1D和2D中进行的一系列数字测试,包括从部分四级测量数据中恢复海冰图象,来验证拟议方法的稳健性和有效性。定量测试表明,对选择多重重建不敏感。