Bir\'{o} et al. (1992) introduced $H$-graphs, intersection graphs of connected subgraphs of a subdivision of a graph $H$. They are related to many classes of geometric intersection graphs, e.g., interval graphs, circular-arc graphs, split graphs, and chordal graphs. We negatively answer the 25-year-old question of Bir\'{o} et al. which asks if $H$-graphs can be recognized in polynomial time, for a fixed graph $H$. We prove that it is NP-complete if $H$ contains the diamond graph as a minor. We provide a polynomial-time algorithm recognizing $T$-graphs, for each fixed tree $T$. When $T$ is a star $S_d$ of degree $d$, we have an $O(n^{3.5})$-time algorithm. We give FPT- and XP-time algorithms solving the minimum dominating set problem on $S_d$-graphs and $H$-graphs parametrized by $d$ and the size of $H$, respectively. The algorithm for $H$-graphs adapts to an XP-time algorithm for the independent set and the independent dominating set problems on $H$-graphs. If $H$ contains the double-triangle as a minor, we prove that $H$-graphs are GI-complete and that the clique problem is APX-hard. The clique problem can be solved in polynomial time if $H$ is a cactus graph. When a graph $G$ has a Helly $H$-representation, the clique problem can be solved in polynomial time. We show that both the $k$-clique and the list $k$-coloring problems are solvable in FPT-time on $H$-graphs (parameterized by $k$ and the treewidth of $H$). In fact, these results apply to classes of graphs with treewidth bounded by a function of the clique number. We observe that $H$-graphs have at most $n^{O(\|H\|)}$ minimal separators which allows us to apply the meta-algorithmic framework of Fomin et al. (2015) to show that for each fixed $t$, finding a maximum induced subgraph of treewidth $t$ can be done in polynomial time. When $H$ is a cactus, we improve the bound to $O(\|H\|n^2)$.


翻译:Bir\ { { { } et al.(1992) 引入了 $H美元的问题, 以美元表示一个固定的图表。 我们证明,如果以美元表示的钻石图为次要部分, 美元表示的分解子图与许多几类几何交叉图有关, 例如, 间隔图, 圆- 弧图, 分解图, 和chordal 图形。 当美元表示的是25年前的Bir\ { { } et al. 的问题时算。 我们用美元表示的多米时间算法, 固定的美元表示的是美元- 美元表示的基数, 美元表示的是美元- 美元表示的基数, 美元数字表示的是 美元算的基数, 美元表示的算法是独立的。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
0+阅读 · 2021年8月5日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月7日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员