Unsupervised anomaly detection could be crucial in future analyses searching for rare phenomena in large datasets, as for example collected at the LHC. To this end, we introduce a physics inspired variational autoencoder (VAE) architecture which performs competitively and robustly on the LHC Olympics Machine Learning Challenge datasets. We demonstrate how embedding some physical observables directly into the VAE latent space, while at the same time keeping the classifier manifestly agnostic to them, can help to identify and characterise features in measured spectra as caused by the presence of anomalies in a dataset.
翻译:在未来分析中,如在LHC收集的大型数据集中寻找罕见现象时,不受监督的异常点探测可能至关重要。 为此,我们引入了一个物理学启发的变异自动编码器(VAE)结构,该结构在LHC奥林匹克机器学习挑战数据集中以竞争和强势方式运行。我们展示了将某些物理观测直接嵌入VAE潜伏空间的方式,同时保持分类器对其明显不可知性,如何帮助识别和描述因数据集中存在异常现象而测量的光谱中的特征。