In numerous regular statistical models, median bias reduction (Kenne Pagui et al., 2017) has proven to be a noteworthy improvement over maximum likelihood, alternative to mean bias reduction. The estimator is obtained as solution to a modified score equation ensuring smaller asymptotic median bias than the maximum likelihood estimator. This paper provides a simplified algebraic form of the adjustment term for general regular models. With the new formula, the estimation procedure benefits from a considerable computational gain by avoiding multiple summations and thus allows an efficient implementation. More importantly, the new formulation allows to highlight how the median bias reduction adjustment can be obtained by adding an extra term to the mean bias reduction adjustment. Illustrations are provided through new applications of median bias reduction to two regression models not belonging to the generalized linear models class, extended beta regression and beta-binomial regression. Mean bias reduction is also provided here for the latter model. Simulation studies show remarkable componentwise median centering of the median bias reduced estimator, while variability and coverage of related confidence intervals are comparable with those of mean bias reduction. Moreover, empirical results for the beta-binomial model show that the method is successful in solving maximum likelihood boundary estimate problem.


翻译:在许多常规统计模型中,中位偏差减少(Kenne Pagui等人,2017年)证明中位偏差减少(Kenne Pagui等人,2017年)是相对于最大可能性的显著改善,与平均偏差减少调整的替代方法相比,中位偏差减少(Kenne Pagui等人,2017年)是一个值得注意的改善。通过计算一个经修改的得分方程式的解决方案,确保比最大可能性估计值低的偏差中位中位偏差减少中位偏差偏差偏差偏差偏差小。本文为普通常规模型提供了简化的变数表形式。有了新公式,估计程序通过避免多重加分数而从大量计算增益中获益,从而得以高效执行。更重要的是,新公式能够通过在平均偏差减少调整中位增加一个额外条件来突出如何实现中位偏差减少偏差调整。通过将偏差减少中位偏差减少的中位数调整作为解决办法,作为解决办法的解决方案,作为解决办法的解决方案,通过两种不属普遍线型模型类别的两个回归模型的新的应用中位减少中位缩小、延长后回归和β-双曲线倒退倒退倒退倒退倒退回归法的回归法的回归法也显示成功解决的方法是成功的最有可能成功。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员