Data separation is a well-studied phenomenon that can cause problems in the estimation and inference from binary response models. Complete or quasi-complete separation occurs when there is a combination of regressors in the model whose value can perfectly predict one or both outcomes. In such cases, and such cases only, the maximum likelihood estimates and the corresponding standard errors are infinite. It is less widely known that the same can happen in further microeconometric models. One of the few works in the area is Santos Silva and Tenreyro (2010) who note that the finiteness of the maximum likelihood estimates in Poisson regression depends on the data configuration and propose a strategy to detect and overcome the consequences of data separation. However, their approach can lead to notable bias on the parameter estimates when the regressors are correlated. We illustrate how bias-reducing adjustments to the maximum likelihood score equations can overcome the consequences of separation in Poisson and Tobit regression models.
翻译:数据分离是一个研究周全的现象,可能造成二进制反应模型的估计和推论方面的问题。当模型中出现各种递减者,其价值可以完全预测一种或两种结果时,即完全或准完全分离。在这类情况下,只有这类情况下,最大可能性估计和相应的标准错误是无限的。人们不太普遍地知道,在进一步的微计量模型中也可以发生同样的现象。该地区为数不多的工程之一是Santos Silva和Tenreyro(2010年),他们指出,Poisson回归中最大可能性估计的有限性取决于数据配置,并提出了发现和克服数据分离后果的战略。然而,当递减因素相互关联时,它们的方法可能会导致参数估计的明显偏差。我们说明如何减少对最大概率的分方程式的偏差调整,以克服Poisson和Tobit回归模型中的分离后果。