It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximation to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the solution is low-rank. A particularly interesting case is the fluid dynamic limit that is commonly obtained in the limit of small Knudsen number. However, in this case the Maxwellian which describes the corresponding equilibrium distribution is not necessarily low-rank; because of this, the methods known in the literature are only applicable to the weakly compressible case. In this paper, we propose an efficient dynamical low-rank integrator that can capture the fluid limit -- the Navier-Stokes equations -- of the Boltzmann-BGK model even in the compressible regime. This is accomplished by writing the solution as $f=Mg$, where $M$ is the Maxwellian and the low-rank approximation is only applied to $g$. To efficiently implement this decomposition within a low-rank framework requires that certain coefficients are evaluated using convolutions, for which fast algorithms are known. Using the proposed decomposition also has the advantage that the rank required to obtain accurate results is significantly reduced compared to the previous state of the art. We demonstrate this by performing a number of numerical experiments and also show that our method is able to capture sharp gradients/shock waves.


翻译:最近已经证明,动态低位算法可以对一系列运动式方程式提供强力和高效的近似近似。 特别是如果解决方案接近于某种无药可治的极限, 已知解决方案是低位的。 一个特别有趣的案例是,在小Knudsen 数的限度内通常获得的流体动态限制。 但是, 在本案中, 描述相应均衡分布的Maxwellian 不一定是低位的; 因此, 文献中知道的方法只能适用于薄弱的压缩案例。 在本文中, 我们提议一个高效的动态低级混凝体器, 它可以捕捉到Boltzmann- BGK 模型的流体极限 -- -- 纳维尔- 斯托克斯方程式 -- -- 即使是在可调制中也是如此。 完成这一目的的办法是将解决方案写成$f=Mg$, 美元是Maxwellian, 低位的近似近似值只适用于$g$。 为了在低位框架内高效地实施这一脱调配置, 我们建议使用直流的系数来评估某些系数, 直压/直流, 而快速算算法显示我们之前的直位的直位方法也明显地显示了我们所需要的直位。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2018年6月4日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2018年6月4日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员