The paper analyses cointegration in vector autoregressive processes (VARs) for the cases when both the number of coordinates, $N$, and the number of time periods, $T$, are large and of the same order. We propose a way to examine a VAR for the presence of cointegration based on a modification of the Johansen likelihood ratio test. The advantage of our procedure over the original Johansen test and its finite sample corrections is that our test does not suffer from over-rejection. This is achieved through novel asymptotic theorems for eigenvalues of matrices in the test statistic in the regime of proportionally growing $N$ and $T$. Our theoretical findings are supported by Monte Carlo simulations and an empirical illustration. Moreover, we find a surprising connection with multivariate analysis of variance (MANOVA) and explain why it emerges.
翻译:本文分析了在坐标数、美元和时段数都很大的情况下,在矢量自动递减过程中的结合情况。我们根据对Johansen概率比测试的修改,建议了一种方法,对混合情况进行VAR检查。我们的程序比最初的Johansen测试及其有限的抽样校正的优势在于我们的测试不会受到过度拒绝。这是通过在按比例增长的美元和T$制度下对测试统计中矩阵的缺损性理论的新颖实现的。我们的理论结论得到了蒙特卡洛模拟和实验性说明的支持。此外,我们发现与差异的多变量分析(MANOVA)存在惊人的联系,并解释了其出现的原因。