The capacity of offloading data and control tasks to the network is becoming increasingly important, especially if we consider the faster growth of network speed when compared to CPU frequencies. In-network compute alleviates the host CPU load by running tasks directly in the network, enabling additional computation/communication overlap and potentially improving overall application performance. However, sustaining bandwidths provided by next-generation networks, e.g., 400 Gbit/s, can become a challenge. sPIN is a programming model for in-NIC compute, where users specify handler functions that are executed on the NIC, for each incoming packet belonging to a given message or flow. It enables a CUDA-like acceleration, where the NIC is equipped with lightweight processing elements that process network packets in parallel. We investigate the architectural specialties that a sPIN NIC should provide to enable high-performance, low-power, and flexible packet processing. We introduce PsPIN, a first open-source sPIN implementation, based on a multi-cluster RISC-V architecture and designed according to the identified architectural specialties. We investigate the performance of PsPIN with cycle-accurate simulations, showing that it can process packets at 400 Gbit/s for several use cases, introducing minimal latencies (26 ns for 64 B packets) and occupying a total area of 18.5 mm$^2$ (22 nm FDSOI).


翻译:将数据和控制任务卸载到网络的能力正变得越来越重要,特别是如果我们考虑到与CPU频率相比网络速度的增长速度较快,网络内计算通过在网络中直接运行任务,使更多的计算/通信重叠,并有可能改善总体应用性能,从而减轻主机CPU的负荷,但维持下一代网络提供的带宽,例如400 Gbit/s,可能会成为一个挑战。 SPIN是NI计算的一个编程模型,用户在NIC中指定了属于特定信息或流的每袋收到的网络速度增长速度,而CUDA则能够使CUDA类似加速,因为NIC配有处理网络包的轻量处理元素。我们调查SPIN NIC应该提供的建筑特点,以便能够高性能、低功率和灵活的包处理。我们引入了PSPIN,这是第一个基于多集群RISC-V结构的开放源 SPIN实施SIN,并且根据已确定的建筑特点设计。我们调查了PSUA类似C-C-C-CUDA的加速速度,在那里配备了轻质处理网络包件的64-NSOISIM系统,我们调查系统模拟了18的SIMIMSLA-C-C-C-C-CSUDM 模拟了BBB-C-C-C-C-C-C-C-C-C-CIMBBBSIMSIMSIMSIMSIMSL 的模拟了18 的模拟了18 Blimbly-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-NBDMFMLMBDMDMLBImbal-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

第26届SPIN研讨会旨在将对软件分析和软件模型自动化工具技术感兴趣的研究人员和实践者聚集在一起,以进行验证和确认。研讨会特别关注并发软件,但不排除对顺序软件的分析。提交的资料包括理论结果、新算法、工具开发和经验评估。官网链接:https://conf.researchr.org/track/spin-2019/spin-2019-papers
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员