Depth factorization and quantization have emerged as two of the principal strategies for designing efficient deep convolutional neural network (CNN) architectures tailored for low-power inference on the edge. However, there is still little detailed understanding of how different depth factorization choices affect the final, trained distributions of each layer in a CNN, particularly in the situation of quantized weights and activations. In this study, we introduce a progressive depth factorization strategy for efficient CNN architecture exploration under quantization constraints. By algorithmically increasing the granularity of depth factorization in a progressive manner, the proposed strategy enables a fine-grained, low-level analysis of layer-wise distributions. Thus enabling the gain of in-depth, layer-level insights on efficiency-accuracy tradeoffs under fixed-precision quantization. Such a progressive depth factorization strategy also enables efficient identification of the optimal depth-factorized macroarchitecture design (which we will refer to here as FactorizeNet) based on the desired efficiency-accuracy requirements.


翻译:深度因子化和量化是设计高效深电动神经网络结构的主要战略之一,这些结构是针对边缘低功率推断而专门设计的,然而,对于不同深度因子化选择如何影响有线电视新闻网中每一层最终、经过培训的分布,特别是在量化权重和激活的情况下,对于有线电视新闻网架构在量化限制下进行高效探索,我们提出了渐进深度因子化战略。通过循序渐进地增加深度因子化的颗粒,拟议战略能够对分层分布进行精细的、低层次的分析,从而能够在固定精确权分中获取关于效率-准确性权衡的深入、层次的洞察力。这种渐进深度因子化战略还有助于根据预期的效率-准确性要求,有效地确定最佳深度计分解的宏观结构设计(我们这里称为“因子化网 ” )。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2020年10月8日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
6+阅读 · 2018年2月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员