Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled data. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model. Finally, our evaluations on a dialogue relation extraction dataset show that our method is simple yet effective and achieves a state-of-the-art F1 score on relation extraction, improving upon existing methods by 13.5%.
翻译:在长式多方对话中,现有关于交叉感应关系提取的研究旨在改进关系提取,而不考虑这些方法的可解释性。这项工作旨在弥补这一差距,侧重于提取解释,表明在仅使用部分标签数据的同时存在着某种关系。我们提出了我们的模型-不可知框架,D-REX,这是一个政策指导的半监督算法,可以解释关系和排序。我们把关系提取作为重排任务,并将关系和实体特定解释作为推断过程的一个中间步骤。我们发现,大约90%的时间,人类的警告者倾向于D-REX的解释,而不是基于强有力的BERT的联合关系提取和解释模式。最后,我们对对话关系提取数据集的评估表明,我们的方法简单而有效,在关系提取方面达到了最先进的F1分数,改进了现有方法13.5%。