Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the \textit{quantum-assisted Helmholtz machine:} a hybrid quantum-classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16x16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.
翻译:机器学习是近期量子技术的关键应用之一,因为它具有高商业价值和广泛适用性。 在这项工作中,我们引入了\ textit{quantum 辅助 Helmholtz 机器:}一个混合量子古典框架,它有可能解决高维真实世界机器学习关于连续变量的数据集。我们不象以前的做法所建议的那样,使用量子计算机来协助深层次学习,而是利用深层学习来提取适合在相对较小的量子计算机上处理的低维数据二进制二进制二进制。然后,量子硬件和深层学习结构一起工作,培训一个不受监督的基因模型。我们用D-Wave 2000Q量子装置的1644量子位来展示这个概念,用16x16持续价值的像素来模拟MNIST手写数字数据集的子抽样版本。尽管我们用量子内纳仪来说明这个概念,但可以在这个灵活的框架内探索对其他量子平台的适应,例如离子技术或超导门型结构。