Targeting at depicting land covers with pixel-wise semantic categories, semantic segmentation in remote sensing images needs to portray diverse distributions over vast geographical locations, which is difficult to be achieved by the homogeneous pixel-wise forward paths in the architectures of existing deep models. Although several algorithms have been designed to select pixel-wise adaptive forward paths for natural image analysis, it still lacks theoretical supports on how to obtain optimal selections. In this paper, we provide mathematical analyses in terms of the parameter optimization, which guides us to design a method called Hidden Path Selection Network (HPS-Net). With the help of hidden variables derived from an extra mini-branch, HPS-Net is able to tackle the inherent problem about inaccessible global optimums by adjusting the direct relationships between feature maps and pixel-wise path selections in existing algorithms, which we call hidden path selection. For the better training and evaluation, we further refine and expand the 5-class Gaofen Image Dataset (GID-5) to a new one with 15 land-cover categories, i.e., GID-15. The experimental results on both GID-5 and GID-15 demonstrate that the proposed modules can stably improve the performance of different deep structures, which validates the proposed mathematical analyses.


翻译:以像素一样的语义分类来绘制土地覆盖图, 遥感图像中的语义分割法需要描述广袤地理位置的不同分布, 而在现有深层模型的结构中, 等像素的前方路径很难实现。 虽然设计了几种算法, 选择像素的适应前方路径来进行自然图像分析, 但对于如何获得最佳选择仍然缺乏理论支持。 在本文中, 我们提供参数优化方面的数学分析, 指导我们设计一种叫做隐藏路径选择网络( HPS- Net) 的方法。 在从一个额外的微型布局中获得的隐藏变量的帮助下, HPS- Net 能够通过调整地貌图和在现有算法中选择像素前方路径之间的直接关系来解决无法获取全球最佳条件的固有问题, 我们称之为隐藏路径选择。 为了更好的培训和评估, 我们进一步改进并扩展了 Gaofen 5 级图像数据集( GID-5), 指导我们设计一种名为“隐藏路径选择网 ” (HPS- Net) 。 在从一个额外的微型布局中获得的隐藏变量, GID-15 。 实验结果可以显示GID-5 和GID 15 所提议的数学模型结构的稳定性分析。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
4+阅读 · 2018年6月1日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员