We study the spectral implications of re-weighting a graph by the $\ell_\infty$-Lewis weights of its edges. Our main motivation is the ER-Minimization problem (Saberi et al., SIAM'08): Given an undirected graph $G$, the goal is to find positive normalized edge-weights $w\in \mathbb{R}_+^m$ which minimize the sum of pairwise \emph{effective-resistances} of $G_w$ (Kirchhoff's index). By contrast, $\ell_\infty$-Lewis weights minimize the \emph{maximum} effective-resistance of \emph{edges}, but are much cheaper to approximate, especially for Laplacians. With this algorithmic motivation, we study the ER-approximation ratio obtained by Lewis weights. Our first main result is that $\ell_\infty$-Lewis weights provide a constant ($\approx 3.12$) approximation for ER-minimization on \emph{trees}. The proof introduces a new technique, a local polarization process for effective-resistances ($\ell_2$-congestion) on trees, which is of independent interest in electrical network analysis. For general graphs, we prove an upper bound $\alpha(G)$ on the approximation ratio obtained by Lewis weights, which is always $\leq \min\{ \text{diam}(G), \kappa(L_{w_\infty})\}$, where $\kappa$ is the condition number of the weighted Laplacian. All our approximation algorithms run in \emph{input-sparsity} time $\tilde{O}(m)$, a major improvement over Saberi et al.'s $O(m^{3.5})$ SDP for exact ER-minimization. Finally, we demonstrate the favorable effects of $\ell_\infty$-LW reweighting on the \emph{spectral-gap} of graphs and on their \emph{spectral-thinness} (Anari and Gharan, 2015). En-route to our results, we prove a weighted analogue of Mohar's classical bound on $\lambda_2(G)$, and provide a new characterization of leverage-scores of a matrix, as the gradient (w.r.t weights) of the volume of the enclosing ellipsoid.


翻译:我们研究的是以 $\ ell\ infty} Lewis 平面的重量重算图的光谱影响。 对比之下, 我们的主要动机是 ER- 最小化问题( Saberi et al., SIAM'08 ): 在未定向的平面 $G$的情况下, 目标是找到正正的平面重量 $wx comthbb{r\ rem$, 以最小化的 ${emty} 有效- restations $ 。 以此算法动机, 我们研究以 Lesical 重量来获取的 ER- a complia 。 在平面的平面上, 所有平面的平面的平面 $_ lix= dirmax $.

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员