Instance-level image retrieval is the task of searching in a large database for images that match an object in a query image. To address this task, systems usually rely on a retrieval step that uses global image descriptors, and a subsequent step that performs domain-specific refinements or reranking by leveraging operations such as geometric verification based on local features. In this work, we propose Reranking Transformers (RRTs) as a general model to incorporate both local and global features to rerank the matching images in a supervised fashion and thus replace the relatively expensive process of geometric verification. RRTs are lightweight and can be easily parallelized so that reranking a set of top matching results can be performed in a single forward-pass. We perform extensive experiments on the Revisited Oxford and Paris datasets, and the Google Landmark v2 dataset, showing that RRTs outperform previous reranking approaches while using much fewer local descriptors. Moreover, we demonstrate that, unlike existing approaches, RRTs can be optimized jointly with the feature extractor, which can lead to feature representations tailored to downstream tasks and further accuracy improvements. Training code and pretrained models will be made public.
翻译:实情图像检索是在大型数据库中搜索与查询图像中对象匹配的图像的任务。 要完成这项任务, 系统通常依赖于使用全球图像描述符的检索步骤, 以及随后通过利用基于本地特征的几何校验等操作进行特定领域的改进或重新排序的步骤。 在这项工作中, 我们提议将变压器( RRTs) 作为一种通用模型, 将本地和全球特性合并, 以监督的方式重新排列相匹配图像, 从而取代相对昂贵的几何校验过程。 RRTs 比较轻, 并且可以很容易地平行化, 从而可以将一组顶级匹配结果重新排到一个前方通道上。 我们在重审的牛津和巴黎数据集以及Google Landmark v2数据集上进行了广泛的实验, 表明RRTs在比先前的变位方法更优, 同时使用更少的本地解调器。 此外, 我们证明, RRTs可以与地段提取器联合优化, 从而导致根据下游任务和进一步的精确性改进。 培训代码和预设模型将公诸于众。