The Hilbert metric is a distance function defined for points lying within the interior of a convex body. It arises in the analysis and processing of convex bodies, machine learning, and quantum information theory. In this paper, we show how to adapt the Euclidean Delaunay triangulation to the Hilbert geometry defined by a convex polygon in the plane. We analyze the geometric properties of the Hilbert Delaunay triangulation, which has some notable differences with respect to the Euclidean case, including the fact that the triangulation does not necessarily cover the convex hull of the point set. We also introduce the notion of a Hilbert ball at infinity, which is a Hilbert metric ball centered on the boundary of the convex polygon. We present a simple randomized incremental algorithm that computes the Hilbert Delaunay triangulation for a set of $n$ points in the Hilbert geometry defined by a convex $m$-gon. The algorithm runs in $O(n (\log n + \log^3 m))$ expected time. In addition we introduce the notion of the Hilbert hull of a set of points, which we define to be the region covered by their Hilbert Delaunay triangulation. We present an algorithm for computing the Hilbert hull in time $O(n h \log^2 m)$, where $h$ is the number of points on the hull's boundary.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月30日
Arxiv
0+阅读 · 2024年1月27日
Arxiv
10+阅读 · 2022年3月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年1月30日
Arxiv
0+阅读 · 2024年1月27日
Arxiv
10+阅读 · 2022年3月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员