Coordinating heterogeneous robot teams from free-form natural-language instructions is hard. Language-only planners struggle with long-horizon coordination and hallucination, while purely formal methods require closed-world models. We present FLEET, a hybrid decentralized framework that turns language into optimized multi-robot schedules. An LLM front-end produces (i) a task graph with durations and precedence and (ii) a capability-aware robot--task fitness matrix; a formal back-end solves a makespan-minimization problem while the underlying robots execute their free-form subtasks with agentic closed-loop control. Across multiple free-form language-guided autonomy coordination benchmarks, FLEET improves success over state of the art generative planners on two-agent teams across heterogeneous tasks. Ablations show that mixed integer linear programming (MILP) primarily improves temporal structure, while LLM-derived fitness is decisive for capability-coupled tasks; together they deliver the highest overall performance. We demonstrate the translation to real world challenges with hardware trials using a pair of quadruped robots with disjoint capabilities.
翻译:暂无翻译