We focus on the problem of efficient sampling and learning of probability densities by incorporating symmetries in probabilistic models. We first introduce Equivariant Stein Variational Gradient Descent algorithm -- an equivariant sampling method based on Stein's identity for sampling from densities with symmetries. Equivariant SVGD explicitly incorporates symmetry information in a density through equivariant kernels which makes the resultant sampler efficient both in terms of sample complexity and the quality of generated samples. Subsequently, we define equivariant energy based models to model invariant densities that are learned using contrastive divergence. By utilizing our equivariant SVGD for training equivariant EBMs, we propose new ways of improving and scaling up training of energy based models. We apply these equivariant energy models for modelling joint densities in regression and classification tasks for image datasets, many-body particle systems and molecular structure generation.
翻译:我们通过在概率模型中纳入对称性,重点研究高效取样和了解概率密度的问题。我们首先引入了等差性斯坦因斯坦变异梯因子算法,这是一种基于斯坦特性的等同性抽样方法,用于用对称性密度取样。 等差性SVGD通过等同性内核在密度中明确纳入对称性信息,使由此产生的采样者在抽样复杂性和所产生样品质量方面都具有效率。 随后,我们定义了等差性能源基建模型,以模拟用对比差异法学习的变异性密度。我们利用我们的等差性SVGD培训等同性EBMs,提出了改进和扩大能源模型培训的新方法。我们将这些等差性能源模型用于模拟图像数据集、多体粒子系统和分子结构生成的回归性和分类性联合密度。