Massive rumors usually appear along with breaking news or trending topics, seriously hindering the truth. Existing rumor detection methods are mostly focused on the same domain, and thus have poor performance in cross-domain scenarios due to domain shift. In this work, we propose an end-to-end instance-wise and prototype-wise contrastive learning model with a cross-attention mechanism for cross-domain rumor detection. The model not only performs cross-domain feature alignment but also enforces target samples to align with the corresponding prototypes of a given source domain. Since target labels in a target domain are unavailable, we use a clustering-based approach with carefully initialized centers by a batch of source domain samples to produce pseudo labels. Moreover, we use a cross-attention mechanism on a pair of source data and target data with the same labels to learn domain-invariant representations. Because the samples in a domain pair tend to express similar semantic patterns, especially on the people's attitudes (e.g., supporting or denying) towards the same category of rumors, the discrepancy between a pair of the source domain and target domain will be decreased. We conduct experiments on four groups of cross-domain datasets and show that our proposed model achieves state-of-the-art performance.


翻译:大量谣言往往伴随着突发新闻或热门话题的出现,严重阻碍了真实情况的传播。现有的谣言检测方法多数集中于同一领域,因此在跨领域场景下表现较差,这是由于领域偏移所造成的。在本研究中,我们提出了一种端到端的基于样本和原型对比学习模型,并配合交叉注意力机制,用于跨领域谣言检测。该模型不仅能够实现跨领域特征对齐,还能够将目标样本与给定来源领域的相应原型对齐。由于目标领域中的标签是不可得的,因此我们采用基于聚类的方法,通过一个来源域样本组成的批次来初始化中心以生成伪标签。此外,我们针对具有相同标签的源数据和目标数据对进行交叉注意力机制的训练,以学习领域不变表示。由于领域对中的样本往往表达相似的语义模式,特别是关于人们对同一类谣言态度(例如支持或否认)的模式,因此领域对之间的差距将被缩小。我们在四组跨领域数据集上进行了实验,并展示了我们提出的模型达到了最先进的性能水平。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
14+阅读 · 2021年8月5日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Arxiv
21+阅读 · 2020年10月11日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员