The extreme requirements for high reliability and low latency in the upcoming Sixth Generation (6G) wireless networks are challenging the design of multi-hop wireless transport networks. Inspired by the advent of the virtualization concept in the wireless networks design and openness paradigm as fostered by the O-RAN Alliance, we target a revolutionary resource allocation scheme to improve the overall transmission efficiency. In this paper, we investigate the problem of multi-hop decode-and-forward (DF) relaying in the finite blocklength (FBL) regime, and propose a DMH-HARQ scheme, which maximizes the end-to-end (E2E) communication reliability in the wireless transport network. We also propose an integer dynamic programming (DP) algorithm to efficiently solve the optimal DMH-HARQ strategy. Constrained within a certain time frame to accomplish E2E transmission, our proposed approach is proven to outperform the conventional listening-based cooperative ARQ, as well as any static HARQ strategy, regarding the E2E reliability. It is applicable without dependence on special delay constraint, and is particularly competitive for long-distance transport network with many hops.
翻译:暂无翻译