As the journey of 5G standardization is coming to an end, academia and industry have already begun to consider the sixth-generation (6G) wireless networks, with an aim to meet the service demands for the next decade. Deep learning-based RF fingerprinting (DL-RFFP) has recently been recognized as a potential solution for enabling key wireless network applications and services, such as spectrum policy enforcement and network access control. The state-of-the-art DL-RFFP frameworks suffer from a significant performance drop when tested with data drawn from a domain that is different from that used for training data. In this paper, we propose ADL-ID, an unsupervised domain adaption framework that is based on adversarial disentanglement representation to address the temporal domain adaptation for the RFFP task. Our framework has been evaluated on real LoRa and WiFi datasets and showed about 24% improvement in accuracy when compared to the baseline CNN network on short-term temporal adaptation. It also improves the classification accuracy by up to 9% on long-term temporal adaptation. Furthermore, we release a 5-day, 2.1TB, large-scale WiFi 802.11b dataset collected from 50 Pycom devices to support the research community efforts in developing and validating robust RFFP methods.


翻译:随着5G标准化的旅程即将结束,学术界和产业界已经开始考虑第六代(6G)无线网络,以满足下一个十年的服务需求。深学习型RF指纹(DL-RFFP)最近被公认为是使关键的无线网络应用和服务(如频谱政策执行和网络访问控制)成为可能的解决办法。最新的DL-RFFP框架在测试时表现显著下降,测试数据来自与培训数据不同的领域。我们在本文件中提议ADL-ID,这是一个不受监督的域调整框架,以对抗性分解代表为基础,处理RFFP任务的时域适应问题。我们的框架已经根据实际LoRa和WiFi数据集进行了评价,与短期适应的CNN基线网络相比,其准确性大约提高了24%。在长期时间适应方面,还将分类准确性提高到9%。此外,我们发布了5天、2.1TFI、大规模WIFI 802.11和50-FFA有效数据采集的5天天、2.1级的WIFFA和50-50-FFA有效数据采集系统支持了5个社区研究装置。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
10+阅读 · 2021年2月26日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员