Tactical decision making and strategic motion planning for autonomous highway driving are challenging due to the complication of predicting other road users' behaviors, diversity of environments, and complexity of the traffic interactions. This paper presents a novel end-to-end continuous deep reinforcement learning approach towards autonomous cars' decision-making and motion planning. For the first time, we define both states and action spaces on the Frenet space to make the driving behavior less variant to the road curvatures than the surrounding actors' dynamics and traffic interactions. The agent receives time-series data of past trajectories of the surrounding vehicles and applies convolutional neural networks along the time channels to extract features in the backbone. The algorithm generates continuous spatiotemporal trajectories on the Frenet frame for the feedback controller to track. Extensive high-fidelity highway simulations on CARLA show the superiority of the presented approach compared with commonly used baselines and discrete reinforcement learning on various traffic scenarios. Furthermore, the proposed method's advantage is confirmed with a more comprehensive performance evaluation against 1000 randomly generated test scenarios.
翻译:由于预测其他道路使用者行为的复杂性、环境的多样性和交通互动的复杂性,自主高速公路驾驶的策略决策和战略动作规划具有挑战性,因为预测其他道路使用者行为的复杂性、环境的多样性和交通互动的复杂性。本文件展示了对自主汽车决策和运动规划的新型端到端持续深度强化学习方法。我们首次在Frenet空间界定了州和行动空间,使驾驶行为与周围行为者的动态和交通互动相比,对道路曲线的变异性小一些。该代理接收了相关车辆过去轨迹的时间序列数据,并在时道上应用了动态神经网络来提取骨干特征。该算法在Frenet框架中生成了连续的波段时空轨图,供反馈控制器跟踪。在CARLA上进行的广泛高纤维高速公路模拟显示,与各种交通情景上常用的基线和离散强化学习相比,所提出的方法优于通常使用的基线和离子强化学习。此外,拟议方法的优点得到确认,对1,000个随机生成的测试情景进行更全面的业绩评估。