5G cellular networks are being deployed all over the world and this architecture supports ultra-dense network (UDN) deployment. Small cells have a very important role in providing 5G connectivity to the end users. Exponential increases in devices, data and network demands make it mandatory for the service providers to manage handovers better, to cater to the services that a user desire. In contrast to any traditional handover improvement scheme, we develop a 'Deep-Mobility' model by implementing a deep learning neural network (DLNN) to manage network mobility, utilizing in-network deep learning and prediction. We use network key performance indicators (KPIs) to train our model to analyze network traffic and handover requirements. In this method, RF signal conditions are continuously observed and tracked using deep learning neural networks such as the Recurrent neural network (RNN) or Long Short-Term Memory network (LSTM) and system level inputs are also considered in conjunction, to take a collective decision for a handover. We can study multiple parameters and interactions between system events along with the user mobility, which would then trigger a handoff in any given scenario. Here, we show the fundamental modeling approach and demonstrate usefulness of our model while investigating impacts and sensitivities of certain KPIs from the user equipment (UE) and network side.
翻译:5G蜂窝网络正在世界各地部署,这一架构支持超常网络的部署。小细胞在向终端用户提供5G连接方面发挥着非常重要的作用。设备、数据和网络要求的指数增加使得服务提供商必须更好地管理移交,满足用户希望提供的服务。与任何传统的移交改进计划不同,我们通过实施一个深思熟虑的神经网络(DLNN)来开发一个“深度移动”模型,以管理网络流动性,利用网络深度学习和预测。我们使用网络关键业绩指标(KPIs)来培训我们的模型来分析网络流量和移交要求。在这个方法中,不断使用深思熟虑的神经网络(如常规神经网络(RNN)或长期短期记忆网络(LSTM))和系统级投入等来观察和跟踪RFS信号条件。我们还可以同时考虑采用一个集体的移交决定。我们可以研究系统事件与用户流动性之间的多重参数和互动,从而在任何特定情况下触发手动。在这里,我们展示了基本的模型方法,同时也展示了我们用户影响的某些模型的敏感性。