Singular and oscillatory functions feature in numerous applications. The high-accuracy approximation of such functions shall greatly help us develop high-order methods for solving applied mathematics problems. This paper demonstrates that hyperinterpolation, a discrete projection method with coefficients obtained by evaluating the $L^2$ orthogonal projection coefficients using some numerical integration methods, may be inefficient for approximating singular and oscillatory functions. A relatively large amount of numerical integration points are necessary for satisfactory accuracy. Moreover, in the spirit of product-integration, we propose an efficient modification of hyperinterpolation for such approximation. The proposed approximation scheme, called efficient hyperinterpolation, achieves satisfactory accuracy with fewer numerical integration points than the original scheme. The implementation of the new approximation scheme is relatively easy. Theorems are also given to explain the outperformance of efficient hyperinterpolation over the original scheme in such approximation, with the functions assumed to belong to $L^1(\Omega)$, $L^2(\Omega)$, and $\mathcal{C}(\Omega)$ spaces, respectively. These theorems, as well as numerical experiments on the interval and the sphere, show that efficient hyperinterpolation has better accuracy in such approximation than the original one when the amount of numerical integration points is limited.
翻译:在许多应用中, 星形和星形功能具有特性和星形功能特征。 这种功能的高精确度近似值将大大有助于我们开发高分级的方法来解决应用数学问题。 本文表明, 超中间法, 一种使用某种数字集成法评估美元=2美元正方位投影系数的离散预测法, 使用某种数字集成法, 可能对于接近单项和星系函数的接近性功能来说效率不高。 为了达到令人满意的准确性, 需要数量相对较大的数字集成点。 此外, 本着产品集成的精神, 我们建议对这种近似法高效地修改超中间法。 拟议的近似法, 称为高效的超中间法, 以比原始集成法少的数字集点实现令人满意的准确性。 新的近似法的实施相对容易。 也给出了这些理论来解释在这种近似值的原始方案上, 假设这些功能属于$L1( omerga) 美元、 $L2 (\\\\\\ omega) $, 和 $\ mathalcal {cal {C} 。 这些近似方案的精确度分别显示了最初的精确度, 和数字空间的精确度, 。