Quantum machine learning is a rapidly evolving field of research that could facilitate important applications for quantum computing and also significantly impact data-driven sciences. In our work, based on various arguments from complexity theory and physics, we demonstrate that a single Kerr mode can provide some "quantum enhancements" when dealing with kernel-based methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum enhancements could happen in terms of convergence time and generalization error. Furthermore, we make explicit indications on how higher-dimensional input data could be considered. Finally, we propose an experimental protocol, that we call \emph{quantum Kerr learning}, based on circuit QED.
翻译:量子机器学习是一个迅速演变的研究领域,可以促进量子计算的重要应用,并对数据驱动科学产生重大影响。 在我们的工作中,基于复杂理论和物理学的各种论据,我们证明,在处理内核法时,单克尔模式可以提供某种“量子增强” 。使用内核特性、神经核核内核理论、Kerr非线性的第一阶扰动理论和非扰动性数字模拟,我们表明,量子增强可以在趋同时间和一般化错误方面发生。此外,我们明确表明如何考虑更高维度的投入数据。最后,我们提议根据电路QED,建立一个实验协议,我们称之为 emph{quantum Kerr 学习} 。