Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements. The quantum computation time scales linearly with dataset size and quadratic for classical post-processing. While our method scales in general exponentially in qubit number, we gain a substantial speed-up when running on intermediate-sized quantum computers. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. Our approach is robust to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods for noisy quantum computers by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our method enables benchmarking of quantum machine learning algorithms with large datasets on currently available quantum computers.
翻译:量子计算机承诺加强实际应用的机器学习。 量子计算机学习真实世界的数据必须处理大量的高维数据。 但是, 测量量子内核的常规方法对于以数据设置大小平方大小的大型数据集来说是不切实际的。 在这里, 我们用随机测量测量量子内核。 量子计算时间尺度, 用数据集大小和经典后处理的二次曲线来线性计算时间尺度。 虽然我们的方法尺度一般以qubit数字指数指数指数指数计算,但我们在运行中等规模量子计算机时会大大加快速度。 此外, 我们有效地将高维数据编码到量子计算机中, 其特征与电路深度线缩放数量相匹配。 该编码的特征是量子渔业信息尺度, 与辐射基内核功能有关。 我们的方法通过一个无成本的减少错误计划对噪声十分有力。 我们用IBM 量子计算机对图像进行分类, 显示我们调音量计算机的方法的优势。 为了进一步加速速度, 我们在不同的量子计算机之间分配量子计算任务。 我们的方法使得量子计算机能够对量子计算机进行现有大型的量子计算机进行基准化。