A novel cross-domain attentional multi-task architecture - xDom - for robust real-world wireless radio frequency (RF) fingerprinting is presented in this work. To the best of our knowledge, this is the first time such comprehensive attention mechanism is applied to solve RF fingerprinting problem. In this paper, we resort to real-world IoT WiFi and Bluetooth (BT) emissions (instead of synthetic waveform generation) in a rich multipath and unavoidable interference environment in an indoor experimental testbed. We show the impact of the time-frame of capture by including waveforms collected over a span of months and demonstrate the same time-frame and multiple time-frame fingerprinting evaluations. The effectiveness of resorting to a multi-task architecture is also experimentally proven by conducting single-task and multi-task model analyses. Finally, we demonstrate the significant gain in performance achieved with the proposed xDom architecture by benchmarking against a well-known state-of-the-art model for fingerprinting. Specifically, we report performance improvements by up to 59.3% and 4.91x under single-task WiFi and BT fingerprinting respectively, and up to 50.5% increase in fingerprinting accuracy under the multi-task setting.


翻译:在这项工作中,我们首次采用了这种全面关注机制来解决RF指纹问题。在本文中,我们采用现实世界的IoT WiFi和蓝牙(BT)排放(而不是合成波形生成)在室内实验试验床的丰富多端和不可避免的干扰环境中进行。我们通过在几个月内收集的波形并展示同样的时间框架和多时间框架指纹评价,展示了捕捉时间框架的影响。我们最了解的是,这是第一次应用这种全面关注机制来解决RF指纹问题。在本文中,我们采用真实世界的IoT WiFi和Blueart(BT)排放(而不是合成波形生成)在室内试验床的多端和不可避免的多端干扰环境中进行。我们用一个众所周知的现代指纹模型为基准,展示了拟议的XDom结构在业绩方面取得的巨大收益。我们报告在单级WiFi和BT任务下,在确定50个指纹的精确度时,将改进率提高到59.3%和4.91x。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
50+阅读 · 2021年8月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
50+阅读 · 2021年8月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员