We propose a general framework for (multiple) conditional randomization tests that incorporate several important ideas in the recent literature. We establish a general sufficient condition on the construction of multiple conditional randomization tests under which their p-values are "independent", in the sense that their joint distribution stochastically dominates the product of uniform distributions under the null. Conceptually, we argue that randomization should be understood as the mode of inference precisely based on randomization. We show that under a change of perspective, many existing statistical methods, including permutation tests for (conditional) independence and conformal prediction, are special cases of the general conditional randomization test. The versatility of our framework is further illustrated with an example concerning lagged treatment effects in stepped-wedge randomized trials.


翻译:我们建议一个包含最近文献中若干重要想法的有条件随机测试(多重)总体框架。我们为构建多重有条件随机测试规定了一个普遍的充分条件,在这种测试中,其P值是“独立的 ”,因为其共同分布在结构上支配了无效统一分配的产物。从概念上讲,我们认为随机化应被理解为完全基于随机化的推论模式。我们表明,在观点变化的情况下,许多现有的统计方法,包括(有条件的)独立和符合预测的调整测试,是一般有条件随机化测试的特殊案例。我们框架的多功能用一个实例进一步说明了我们框架的多功能性,其中说明了在渐入选随机化的试验中滞后治疗效应。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【经典书】贝叶斯统计学Python实战,209页pdf
专知会员服务
66+阅读 · 2020年12月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【经典书】贝叶斯统计学Python实战,209页pdf
专知会员服务
66+阅读 · 2020年12月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员