In this work we revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits, from the perspective of adversarial robustness. Existing works in algorithmic robust statistics make strong distributional assumptions that ensure that the input data is evenly spread out or comes from a nice generative model. Is it possible to achieve strong robustness guarantees even without distributional assumptions altogether, where the sequence of tasks we are asked to solve is adaptively and adversarially chosen? We answer this question in the affirmative for both linear regression and contextual bandits. In fact our algorithms succeed where conventional methods fail. In particular we show strong lower bounds against Huber regression and more generally any convex M-estimator. Our approach is based on a novel alternating minimization scheme that interleaves ordinary least-squares with a simple convex program that finds the optimal reweighting of the distribution under a spectral constraint. Our results obtain essentially optimal dependence on the contamination level $\eta$, reach the optimal breakdown point, and naturally apply to infinite dimensional settings where the feature vectors are represented implicitly via a kernel map.


翻译:在这项工作中,我们从对抗性强力的角度重新审视了两个典型的高维在线学习问题,即线性回归和背景强盗。现有的算法强强的统计工作提供了强有力的分布假设,确保输入数据平均分布或来自一个良好的基因模型。即使没有完全的分布假设,我们能否实现强大的稳健性保障,即使没有完全的分布假设,我们被要求解决的任务的顺序是适应性和对抗性选择的?我们回答这个问题时,线性回归和背景强盗都是肯定的。事实上,我们的算法在常规方法失败时是成功的。特别是,我们展示了对Huber回归和更一般的 convex M-sestator的强大下下限。我们的方法基于一种新的交替最小化最小化计划,它将普通最小的平方与一个简单convex 程序相隔开来,该程序会发现在光谱限制下对分布的最佳再加权。我们的结果基本上是对污染水平 $\eta$, 达到最佳的崩溃点,并且自然适用于通过内核图暗代表特性矢量的无限维环境。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月9日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员