We present an isogeometric method for Kirchhoff-Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable~$G^1$ [1], and on the other hand on the use of the globally $C^1$-smooth isogeometric multi-patch spline space [2]. We use our developed technique within an isogeometric Kirchhoff-Love shell formulation [3] to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modeled without the use of extraordinary vertices.
翻译:我们提出了一种等几何方法,用于具有多个片段的壳结构的 Kirchhoff-Love 壳分析,可能具有特殊顶点,即具有与四个不同的价度顶点。所提出的等几何壳离散化一方面基于 mid-surface 的逼近,采用特定的多片式 G1 一致适用曲面,另一方面基于使用全局 C1 光滑的等几何多片样条空间。我们在等几何 Kirchhoff-Love 壳公式中使用我们开发的技术来研究多片结构上的线性和非线性壳问题。通过数值结果展示了我们的方法在有效分析具有不能在没有使用特殊顶点的情况下建模的几何复杂的多片结构中的壳的能力。