We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise. Specifically, given labeled examples $(x, y)$ from a distribution $D$ on $\mathbb{R}^{n} \times \{ \pm 1\}$ such that the marginal distribution on $x$ is arbitrary and the labels are generated by an unknown halfspace corrupted with Massart noise at rate $\eta<1/2$, we want to compute a hypothesis with small misclassification error. Characterizing the efficient learnability of halfspaces in the Massart model has remained a longstanding open problem in learning theory. Recent work gave a polynomial-time learning algorithm for this problem with error $\eta+\epsilon$. This error upper bound can be far from the information-theoretically optimal bound of $\mathrm{OPT}+\epsilon$. More recent work showed that {\em exact learning}, i.e., achieving error $\mathrm{OPT}+\epsilon$, is hard in the Statistical Query (SQ) model. In this work, we show that there is an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a polynomial-time SQ algorithm. In particular, our lower bound implies that no efficient SQ algorithm can approximate the optimal error within any polynomial factor.


翻译:我们研究PAC学习半空在Massart (Massart) (Massart) 噪音(Massart) 中学习半空的复杂程度。 具体地说, 在Massart (Massart) 噪音存在的情况下, 我们研究 PAC 学习半空的复杂复杂性。 具体地说, 在Massart (Massart) 模型中, 有效学习半空的特性在学习理论中一直是一个长期的开放问题。 最近的工作给出了一个以$\mathb{R ⁇ n}\\\ pm1 {pm 1\\\ ⁇ ⁇ 美元发行的标签, 美元边际分配的边际分配是任意的, 标签是由一个未知的半空格以$\mathrm{OPT ⁇ epsilon$的未知的未知半空格。 我们最近的工作显示, 最精确的学习是, 例如, $\mathrem; 在统计Q- hal- develrial 错误中, 最精确的模型可以显示, 最精确的Squal road 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年2月22日
Arxiv
0+阅读 · 2021年2月17日
Arxiv
3+阅读 · 2018年10月11日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员