Reinforcement learning (RL) with linear function approximation has received increasing attention recently. However, existing work has focused on obtaining $\sqrt{T}$-type regret bound, where $T$ is the number of interactions with the MDP. In this paper, we show that logarithmic regret is attainable under two recently proposed linear MDP assumptions provided that there exists a positive sub-optimality gap for the optimal action-value function. More specifically, under the linear MDP assumption (Jin et al. 2019), the LSVI-UCB algorithm can achieve $\tilde{O}(d^{3}H^5/\text{gap}_{\text{min}}\cdot \log(T))$ regret; and under the linear mixture MDP assumption (Ayoub et al. 2020), the UCRL-VTR algorithm can achieve $\tilde{O}(d^{2}H^5/\text{gap}_{\text{min}}\cdot \log^3(T))$ regret, where $d$ is the dimension of feature mapping, $H$ is the length of episode, $\text{gap}_{\text{min}}$ is the minimal sub-optimality gap, and $\tilde O$ hides all logarithmic terms except $\log(T)$. To the best of our knowledge, these are the first logarithmic regret bounds for RL with linear function approximation. We also establish gap-dependent lower bounds for the two linear MDP models.


翻译:使用线性函数近似值的强化学习(RL)最近受到越来越多的关注。然而,现有工作的重点是获取$\sqrt{T}美元类型的遗憾,其中美元是与MDP的互动次数。在本文件中,我们表明,在最近提出的两个线性 MDP假设下,对数遗憾是可以实现的,条件是在最佳行动价值功能方面存在积极的亚最佳差值。更具体地说,在线性 MDP假设(Jin 等人 2019)下,LSVI-UCB 算法可以实现$\tilde{O}(d ⁇ 3}H}5/\ text{gap{tle{mincdot\log(T)) ;在线性混合 MDP 假设(Ayob 等人 和 Al. 2020) 下,UCRCRL-VTR算法可以达到正的亚优性差值 {gtext{cdration{cdivility) $D$H$H$@gral deminal deminal deal deal destrital destrital destrital ex ex rude slations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations flations = = = = =所有最低值。 = =tal = = = = lictal = = =tal = ==================tal lical lical lictal =tal =tal lical =tal =tal =tal =tal ===taltal =taltal lical ======================tal lical = = = ===

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月9日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员