We present a new algorithm for computing the characteristic polynomial of an arbitrary endomorphism of a finite Drinfeld module using its associated crystalline cohomology. Our approach takes inspiration from Kedlaya's p-adic algorithm for computing the characteristic polynomial of the Frobenius endomorphism on a hyperelliptic curve using Monsky-Washnitzer cohomology. The method is specialized using a baby-step giant-step algorithm for the particular case of the Frobenius endomorphism, and in this case we include a complexity analysis that demonstrates asymptotic gains over previously existing approaches
翻译:我们提出了一个新的算法,用于利用相关晶晶同族学,计算一个有限的Drinfeld模块的任意内分泌形态的特性。我们的方法从Kedlaya的p-adi算法中得到灵感,该算法用Monsky-Washnitzer同源体学计算超软体曲线上的Frobenius内分泌形态特性。这种方法专门使用一个婴儿级巨步算法,用于Frobenius内分泌形态的特殊情况,在此情况下,我们包括一个复杂分析,以表明与以前的做法相比,在现今方法上取得了无损的收益。