Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time. Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties leading to better decision-making. In this context, the to-be-adopted temporal resolution is crucial in constructing and analyzing the layout visually. The choice of a resolution is critical, e.g., when dealing with temporally sparse graphs. In such cases, changing the temporal resolution by grouping events (i.e., edges) from consecutive timestamps, a technique known as timeslicing, can aid in the analysis and reveal patterns that might not be discernible otherwise. However, choosing a suitable temporal resolution is not trivial. In this paper, we propose TDANetVis, a methodology that suggests temporal resolutions potentially relevant for analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. To achieve this goal, TDANetVis leverages zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To enhance visual graph analysis, TDANetVis also incorporates the colored barcode, a novel timeline-based visualization built on the persistence barcodes commonly used in TDA. We demonstrate the usefulness and effectiveness of TDANetVis through a usage scenario and a user study involving 27 participants.


翻译:时间图常用于表示复杂系统,并跟踪其组成部分随时间的演变。将这些图形可视化至关重要,因为它允许人们快速识别异常、趋势、模式和其他属性,从而做出更好的决策。在这种情况下,选择要采用的时间解析度在构建和分析布局方面至关重要。解析度的选择至关重要,例如在处理时间稀疏图形时。在这种情况下,通过将连续时间戳中的事件(即边缘)分组来改变时间分辨率,一种称为时间分割的技术可以在分析中提供帮助,并揭示可能不易辨识的模式。然而,选择合适的时间解析度并不容易。在本文中,我们提出了TDANetVis,一种建议针对给定图形进行分析的时间解析度的方法,即导致图形结构发生显著拓扑变化的解析度。为了实现这个目标,TDANetVis利用了Zigzag持久化同调,这是一种来自拓扑数据分析(TDA)的公认技术。为了增强视觉图形分析,TDANetVis还融合了彩色条形码,这是一种新颖的基于时序的可视化,建立在TDA通常使用的持久化条形码之上。我们通过延迟分析的使用场景和涉及27名参与者的用户研究证明了TDANetVis的有用性和有效性。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
论文浅尝 | Temporal Knowledge Graph Completion Using Box Embeddings
开放知识图谱
1+阅读 · 2022年11月4日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
25+阅读 · 2022年1月3日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员