The task of inserting text into a specified position in a passage, known as fill in the blank (FitB), is useful for a variety of applications where writers interact with a natural language generation (NLG) system to craft text. While previous work has tackled this problem with models trained specifically to do the fill-in-the-blank task, a more useful model is one that can effectively perform _both_ FitB and continuation. In this work, we evaluate the feasibility of using a single model to do both tasks. We show that models pre-trained with a FitB-style objective are capable of both tasks, while models pre-trained for continuation are not. Finally, we show how FitB models can be easily finetuned to allow for fine-grained control over the length and word choice of the generation.
翻译:将文字插入一个特定位置的段落中的任务,称为填充空白(FitB),对于作家与自然语言生成系统(NLG)互动以编译文本的各种应用是有用的。虽然以前的工作已经通过专门培训完成填充空白任务的模型解决这个问题,但一个更有用的模型是能够有效完成 _fitB和延续的模型。在这项工作中,我们评估使用单一模型来完成两个任务的可行性。我们显示,预先培训的具有“FitB”型目标的模型能够同时完成两个任务,而经过预先培训的模型则无法继续。最后,我们展示,如何对“FitB”型模型进行容易的微调,以便对一代的长度和字数选择进行精细控制。