As an important problem in causal inference, we discuss the identification and estimation of treatment effects (TEs) under limited overlap; that is, when subjects with certain features belong to a single treatment group. We use a latent variable to model a prognostic score which is widely used in biostatistics and sufficient for TEs; i.e., we build a generative prognostic model. We prove that the latent variable recovers a prognostic score, and the model identifies individualized treatment effects. The model is then learned as \beta-Intact-VAE--a new type of variational autoencoder (VAE). We derive the TE error bounds that enable representations balanced for treatment groups conditioned on individualized features. The proposed method is compared with recent methods using (semi-)synthetic datasets.
翻译:作为因果推断中的一个重要问题,我们讨论在有限的重叠情况下确定和估计治疗效果的问题;也就是说,当具有某些特征的主体属于一个单一的治疗组时,我们使用潜在变量来模拟在生物统计学中广泛使用的预测分数,并足以满足TEs的需要;即我们建立一个基因学预测模型。我们证明潜在变量恢复了预测分数,而模型则确定了个性化治疗效果。然后将模型学习为\beta-Intact-VAE-一种新型的变异自动电解码(VAE)。我们得出TE误差界限,使以个性化特征为条件的治疗组的代表性能够平衡。拟议方法与最近使用(半)合成数据集的方法进行比较。