Estimation of the value-at-risk (VaR) of a large portfolio of assets is an important task for financial institutions. As the joint log-returns of asset prices can often be projected to a latent space of a much smaller dimension, the use of a variational autoencoder (VAE) for estimating the VaR is a natural suggestion. To ensure the bottleneck structure of autoencoders when learning sequential data, we use a temporal VAE (TempVAE) that avoids an auto-regressive structure for the observation variables. However, the low signal- to-noise ratio of financial data in combination with the auto-pruning property of a VAE typically makes the use of a VAE prone to posterior collapse. Therefore, we propose to use annealing of the regularization to mitigate this effect. As a result, the auto-pruning of the TempVAE works properly which also results in excellent estimation results for the VaR that beats classical GARCH-type and historical simulation approaches when applied to real data.
翻译:对大量资产组合的高风险价值(VaR)的估计是金融机构的一项重要任务。由于资产价格的联合日志回报往往可以预测到一个较小维度的潜在空间,因此使用变式自动编码器估算VaR是一个自然的建议。为了确保在学习连续数据时自动编码器的瓶颈结构,我们使用一个临时VAE(TemmpVAE),避免观测变量的自动反向结构。然而,由于金融数据与VAE自动运行属性相结合的低信号到噪音比率通常使VAE易于在事后崩溃。因此,我们提议使用变式自动编码来减轻这一影响。因此,TemVAE的自动运行工作也很好,从而在应用真实数据时,对战胜典型的GARCH类型和历史模拟方法的VAR得出了极好的估计结果。