Undertaking causal inference with observational data is incredibly useful across a wide range of tasks including the development of medical treatments, advertisements and marketing, and policy making. There are two significant challenges associated with undertaking causal inference using observational data: treatment assignment heterogeneity (\textit{i.e.}, differences between the treated and untreated groups), and an absence of counterfactual data (\textit{i.e.}, not knowing what would have happened if an individual who did get treatment, were instead to have not been treated). We address these two challenges by combining structured inference and targeted learning. In terms of structure, we factorize the joint distribution into risk, confounding, instrumental, and miscellaneous factors, and in terms of targeted learning, we apply a regularizer derived from the influence curve in order to reduce residual bias. An ablation study is undertaken, and an evaluation on benchmark datasets demonstrates that TVAE has competitive and state of the art performance.


翻译:对观测数据进行因果推断在包括发展医疗、广告和营销以及决策在内的广泛任务中是极其有用的。在利用观察数据进行因果推断方面,存在着两个重大挑战:治疗分配差异(\textit{i.e.),治疗群体和未治疗群体之间的差异,以及缺乏反事实数据(\textit{i.e.}),不知道如果一个人得到治疗,而没有得到治疗,就会发生什么。我们通过将结构化推论和有针对性的学习结合起来来应对这两个挑战。在结构上,我们将联合分布因素分为风险、汇合、工具因素和杂杂变因素,在有目标的学习方面,我们采用从影响曲线中得来的定律,以减少剩余偏差。我们进行了反差研究,对基准数据集的评估表明TVAE具有竞争力和艺术表现状况。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【CVPR2021】CausalVAE: 引入因果结构的解耦表示学习
专知会员服务
36+阅读 · 2021年3月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2022年2月4日
Arxiv
14+阅读 · 2020年12月17日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
1+阅读 · 2022年2月4日
Arxiv
14+阅读 · 2020年12月17日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
Top
微信扫码咨询专知VIP会员