In network analysis, developing a unified theoretical framework that can compare methods under different models is an interesting problem. This paper proposes a partial solution to this problem. We summarize the idea of using separation condition for a standard network and sharp threshold of Erd\"os-R\'enyi random graph to study consistent estimation, compare theoretical error rates and requirements on network sparsity of spectral methods under models that can degenerate to stochastic block model as a four-step criterion SCSTC. Using SCSTC, we find some inconsistent phenomena on separation condition and sharp threshold in community detection. Especially, we find original theoretical results of the SPACL algorithm introduced to estimate network memberships under the mixed membership stochastic blockmodel were sub-optimal. To find the formation mechanism of inconsistencies, we re-establish theoretical convergence rates of this algorithm by applying recent techniques on row-wise eigenvector deviation. The results are further extended to the degree corrected mixed membership model. By comparison, our results enjoy smaller error rates, lesser dependence on the number of communities, weaker requirements on network sparsity, and so forth. Furthermore, separation condition and sharp threshold obtained from our theoretical results match classical results, which shows the usefulness of this criterion on studying consistent estimation.


翻译:在网络分析中,开发一个能够比较不同模式下方法的统一理论框架是一个有趣的问题。本文件建议了这一问题的部分解决办法。我们总结了使用标准网络分离条件和Erd\"os-R\'enyi随机图尖锐阈值的想法,以研究一致的估计,比较理论错误率和光谱方法网络宽度的要求,这些模型可能退化为随机区块模型,作为四步标准。我们利用SCSTCC,发现在分离条件和社区检测的临界值方面有一些不一致的现象。特别是,我们发现为估计混合成员组合区块模型下的网络成员资格而引入的SPACL算法的最初理论结果不尽如预期。为了找到不一致的形成机制,我们通过对行进偏差应用最新技术,重新确定这种算法的理论趋同率。结果进一步扩展到经过纠正的混合成员模式的程度。比较,我们的结果在社区数量上出现了一些错误率较小、对网络渗透性要求较弱、以及如此突出的参数。此外,分离条件和尖阈值是用来研究我们从理论上得出的结果的一致性标准。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员