It is highly desirable to know how uncertain a model's predictions are, especially for models that are complex and hard to understand as in deep learning. Although there has been a growing interest in using deep learning methods in diffusion-weighted MRI, prior works have not addressed the issue of model uncertainty. Here, we propose a deep learning method to estimate the diffusion tensor and compute the estimation uncertainty. Data-dependent uncertainty is computed directly by the network and learned via loss attenuation. Model uncertainty is computed using Monte Carlo dropout. We also propose a new method for evaluating the quality of predicted uncertainties. We compare the new method with the standard least-squares tensor estimation and bootstrap-based uncertainty computation techniques. Our experiments show that when the number of measurements is small the deep learning method is more accurate and its uncertainty predictions are better calibrated than the standard methods. We show that the estimation uncertainties computed by the new method can highlight the model's biases, detect domain shift, and reflect the strength of noise in the measurements. Our study shows the importance and practical value of modeling prediction uncertainties in deep learning-based diffusion MRI analysis.
翻译:极有必要了解模型预测的不确定性是如何的,特别是对于复杂和难以理解的深层学习模型而言。虽然人们越来越有兴趣在扩散加权MRI中使用深层学习方法,但先前的工程并没有解决模型不确定性问题。在这里,我们建议采用深层学习方法来估计扩散速度和计算估计不确定性。依靠数据的不确定性由网络直接计算,并通过减少损失来学习。模型不确定性是使用蒙特卡洛的辍学方法计算出来的。我们还提出了评估预测不确定性质量的新方法。我们比较了新方法与标准的最小方的温度估计和以靴套为基础的不确定性计算技术。我们的实验表明,当测量数据数量少时,深层学习方法更准确,其不确定性预测比标准方法更精确。我们表明,通过新方法计算出来的不确定性可以突出模型的偏差,检测域变化,并反映测量过程中的噪音强度。我们的研究显示,在深度学习的MRI扩散分析中,将预测不确定性模型化的重要性和实际价值。