As Deep Neural Networks (DNNs) usually are overparameterized and have millions of weight parameters, it is challenging to deploy these large DNN models on resource-constrained hardware platforms, e.g., smartphones. Numerous network compression methods such as pruning and quantization are proposed to reduce the model size significantly, of which the key is to find suitable compression allocation (e.g., pruning sparsity and quantization codebook) of each layer. Existing solutions obtain the compression allocation in an iterative/manual fashion while finetuning the compressed model, thus suffering from the efficiency issue. Different from the prior art, we propose a novel One-shot Pruning-Quantization (OPQ) in this paper, which analytically solves the compression allocation with pre-trained weight parameters only. During finetuning, the compression module is fixed and only weight parameters are updated. To our knowledge, OPQ is the first work that reveals pre-trained model is sufficient for solving pruning and quantization simultaneously, without any complex iterative/manual optimization at the finetuning stage. Furthermore, we propose a unified channel-wise quantization method that enforces all channels of each layer to share a common codebook, which leads to low bit-rate allocation without introducing extra overhead brought by traditional channel-wise quantization. Comprehensive experiments on ImageNet with AlexNet/MobileNet-V1/ResNet-50 show that our method improves accuracy and training efficiency while obtains significantly higher compression rates compared to the state-of-the-art.


翻译:由于深神经网络(DNNS)通常被过度分解,且有数百万重量参数,因此在资源限制的硬件平台上部署这些大型DNN模型具有挑战性,例如智能手机。许多网络压缩方法,例如修剪和量化等,建议大幅缩小模型的大小,关键是找到每一层的适当压缩分配(例如修剪宽度和量化代码书)。现有解决方案在微调压缩模型的同时,以迭代/人工方式获得压缩分配,从而受效率问题的影响。与先前的艺术不同,我们提议在本文中采用新颖的 One-shot Prutning-量化(OPQ) 模型。在微调过程中,我们建议通过不使用常规版本版本的平面化前置精度配置方法,在每部域网内进行统一的平整流化,然后通过普通版本的平流式平流化方法,在微的平流离式版本中,通过普通版本的平流式平流式平流式平流式平流式平流式平流式平流式平流。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Network Pruning via Feature Shift Minimization
Arxiv
0+阅读 · 2022年7月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员